By McKinsey

Numetrics R&D Analytics

+

010110110 01100101

0101101 010110111

There are many questions that can be answered by leveraging analytics in R&D and project planning

	Examples of questions analytics can help with
	 Project planning – How can we have better predictability on duration, resources and cost for new projects?
	 Portfolio planning – How can we best manage the portfolio and optimize our R&D spend?
Predictability & planning	Resource allocation – How can we ensure optimal staffing and avoid resource bottlenecks?
	Risk management – How can we identify execution risk and early on and minimize costly schedule slips?
	 What-if analysis – What are the cost/resources/schedule trade-offs for different project plans and scenarios?
	Performance benchmark and root cause analysis – How does our performance vary internally? How does it compare to peers and what best practices should we adopt?
Performance improvement	Improvement tracking – How well are our improvement initiatives (e.g. Agile transformation, complexity reduction, etc.) working?
	 Informed operational decisions – Is our outsourcing strategy working? Is our footprint harming productivity? How can we identify best practices across BUs?

Numetrics offer analytic solutions, applicable to embedded SW, semiconductor IC and application SW development

What isSaaS-based R&D predictive analytics platform based on aNumetrics?patented complexity algorithm to provide:

Performance benchmarking Root cause analysis

Where can Numetrics be applied?

- Software (Embedded and application):
 - Verticals: Automotive, Telecom, Financial, Medical devices, Industrial controls, Aerospace & Defense, etc.
 - OS': Android, IOS, Linux, Microsoft, Wind River, TI, etc.
 - Platforms: ARM, MIPS, Broadcom, Freescale, IBM, Microchip, Renesas, Samsung
 - Semiconductors (ICs): Across segments, including Analog, Mixed signal, Memory, SOC, FPGA, IP, RF

Numetrics leverages advanced and predictive analytics to enable step-function improvements in R&D performance and project predictability

R&D

capacity¹

Schedule

slip²

Time to

market

Numetrics By McKinsey

Performance benchmarking

Measure performance and benchmark against industry peers

Root cause analysis

Use analytics to find causes and drivers of low performance

Project planning & risk assessment

Provide an accurate estimation of time and resources required

1 R&D Capacity is measured as "complexity units per person-week"

2 Schedule Slip is the amount of schedule overrun, expressed as a % of the original schedule. (e.g. if a 100-week project slips 12 weeks, then schedule slip = 12%)

After analytics

60-90%

20-40%

5-10%

Performance benchmarking – Creates a productivity baseline to enable internal and industry benchmarking

Performance benchmarking

Create a project-level productivity baseline based on recent projects, and benchmark across multiple dimensions against a database of ~2,000 IC and 1,700+ SW projects

Sample outputs

Project duration Vs. Design complexity

Productivity Vs. Team size

Industry peers

Client projects

Performance benchmarking – Wide range of metrics can be benchmarked

Client Software Projects Band containing 50% of industry peers

Root cause analysis – Analyzes industry database and best practices to identify likely causes of low productivity

🔧 Root cause analysis

Use analytic tools to find root causes and drivers of low performance, and compare to industry best practices to determine recommended course of action

Sample outputs

Poor spec stability caused significant schedule slip

Insufficient effort during design phase caused higher test effort

Project planning – Predictive analytics used to generate robust project plans and identify time-to-market risks

Project planning and risk assessment

Use predictive analytics to provide better transparency to schedule and required resources at the project's outset and assess schedule risk due to unrealistic productivity assumptions

Sample outputs

Predicted staffing requirements by role and project phase

Schedule risk due to unrealistic productivity assumption

Project planning – predictive analytics is used to optimize schedule and staffing at the project and portfolio levels

"What-if" scenarios to determine tradeoffs and optimize the plan

- Planned staffing plan is plotted against the predicted resource requirements to identify gaps
- "What-if" scenarios can be run to better understand tradeoffs between specifications, resources, budget and timeline, and to determine the optimal plan for the project

Analytics on required staffing and available resources across multiple projects

- Estimated staffing requirements by role and project phase across multiple projects is compared to available resources
- Resource gaps and bottlenecks are identified early on with plenty of time to adjust staffing levels, modify scope or reprioritize projects

Benchmarking and root cause analysis require project data and timelines of several completed projects

	1 Data collection	Complexity and Performance calculation	Benchmarking	Root cause analysis and recommendations
Activities	 Identify projects and data providers (often a project/program leader who solicits input from internal project records, architects or developers) Training on the input requirements (2 hours Webex or on-site) Start-up workshop: on- site, individual or group (3-4 hours) Collect data, including: Project milestones and staffing history Features / use cases Team description, tools and methodology, specification changes, and defects data 	Numetrics calculates complexity and performance metrics, such as: Design complexity Total duration and phase durations Total effort and phase effort Schedule slip Development productivity Development throughput Cost per complexity unit and total cost Reuse and reuse leverage	 Numetrics identifies a peer group of projects, as similar as possible to client projects Client performance is compared to the peer group, differences are highlighted using a variety of analytic tools and techniques including: XY scatter plots Radar charts Tabular data Phase charts Histograms 	 Analytic tools search for root causes for areas of high and low performance (identify drivers of performance) Use best in class practices to determine recommended course of action Share results and discuss implications and opportunities for improvement
	initial ef	fort from client is approx.	. 5-6 nours per project	

Numetrics' predictive analytics can help optimize project planning and timely execution

Baseline performance	Input project data	Calculate complexity	Estimate project plan	Identify risks in current plan
Past performance	New project	Numetrics'	Prediction engine	Identify resource
across a range of	characteristics	complexity engine,	estimates resource	and schedule risks
projects is	(e.g., # features,	calibrated by a set	and schedule plan	based on a
assessed to build a	re-use, platform)	of industry wide	based on past	comparison of
performance	and constraints	projects, estimates	performance,	predicted plan and
baseline for the	(e.g. resources)	the complexity of	project data and	project expectations
organization	are captured	the project ¹	complexity	or existing plan

Schedule & Resource Estimation

80

60

40

20

0

Schedule Risk Analysis

1 Measured in Complexity Units - A metric reflecting the amount of effort the average development team will spend on the project

McKinsey & Company 10

There are several ways to engage Numetrics

	Scope	Engagement model	
Analytics focused diagnostic	 4-6 week (depending on data availability), Numetrics led diagnostic 	 Numetrics team handles data entry, validation, analyses, and 	
	 Standalone analytic assessment of 5-7 completed projects 	reports Client collects required project	
	 Provides a productivity baseline , industry benchmarks and analytic root cause analysis 	data under Numetrics' guidance and support	
Deep R&D diagnostic	 8-10 weeks deep diagnostic, combining analytic and qualitative analyses 	 Numetrics team handles data entries, validation, analyses, 	
	 Includes analytics focused diagnostic, complemented by qualitative tools such as surveys, project deconstruction, process mapping, interviews and workshops to provide a complete view of productivity and performance drivers 	 tailored benchmarking and reports Client collects required project data with Numetrics' guidance 	
	 May include planning of a new project to determine required resources and schedule risk 		
Subscription	 Embed Numetrics planning tool in the standard PD process to continuously track performance 	 Client trained to input project data and run reports directly 	
	 Use predictive analytics to increase TTM transparency and optimize resource allocation 	using the web interfaceNumetrics team runs the	
	 Includes initial benchmark and baseline creation and access to the planning tool 	analyses and provides insights	

Numetrics provides a field proven, analytics based productivity and planning suite of solutions

Experies expert	ience and ise	 Core competence in developing complexity and productivity models Mature complexity models (10th generation of the IC and 7th generation for SW model) with over 10 years of continuous development Models calibrated based on a database with 2000+ IC and 1700+ SW industry projects Supported by a team of experts with hands-on R&D and productivity enhancement experience
Disting availab	ctive, readily ble tools	 Full productivity and planning solution readily available for productivity measurements and benchmarks, root cause analysis and project and portfolio planning and risk assessment Immediate productivity improvement with minimal distraction from maintaining and reconciling internal complexity tools
Analyt accura prover	ics-based acy and n impact	 Demonstrated ~90% accuracy across all predictive models Provides unbiased, independent view of complexity, that is not subject to manipulations Output is facts and analytics based rather than subjective assessments and opinions Typical impact in the range of 20 - 40% increase in R&D productivity and 60 - 90% reduction in schedule slips
Field p across techno	roven clients and logies	 Successfully deployed by large, diversified clients with distributed teams Scope includes: IC (SoC, Analog, RF, IP, Mixed Signal, FPGA), Embedded Software and Application/Enterprise Software

Who to contact to get started?

Prasad Kunal

Director, Client Development

prasad_kunal@mckinsey.com

Mike Fogerty Head of Client Development Mike_fogerty@mckinsey.com

Ori Ben-Moshe

General Manager

ori_ben-moshe@mckinsey.com

Aaron Aboagye Principal aaron_aboagye@mckinsey.com

Appendix

Numetrics' analytics engine is based on a proprietary "design complexity" model that normalizes productivity across projects

Design/development complexity:

- A metric representing the total amount of project effort the average design/development team in the industry would expend on the project – quantifies the true, normalized output of the design team
- The complexity model fully takes into account the stochastic nature of product development, which enables the
 predictive analytics engines to reliably estimate schedule & resource requirements and perform meaningful
 comparisons of performance metrics across different projects/designs

Software Complexity Measures

- Customer requirements
- Functional requirements
- Test cases
- Use cases
- Test types
- Lines of Code
- Architectural layers
- Number/type of components
- Reuse

Complexity inputs

- Programming language(s)
- Number of variants
- Real-time content
- Available storage space
- Number of platforms
- Platform maturity

Project selection guidelines

Project scope (phases) must include requirements definition, implementation, verification and validation, and a production release Projects must be finished, having been released into production and/or the project has transferred to sustaining engineering Choose projects for which you can access with reasonable effort, the milestones, staffing and technical characteristics Include a variety of projects, from small to large, to facilitate drawing trends. First-timers typically choose projects with teams from 5 to 50 FTE for which there was a dedicated project manager Include representative projects, neither the best nor the worst Include projects from the same business unit. This will 1) facilitate selection of peers from industry and 2) increase consistency of methodology, tools, etc. Quantity: the smaller the project, the larger the number of projects needed to establish a baseline. Reason: smaller projects exhibit more variation in most dimensions. A typical performance baseline should contain a minimum of 5-10 projects

Example of project data collected for benchmarking

Categorization

- Type of End Equipment
- Project Scope & Description

Features (only one required)

- # Customer requirements, or
- # User stories, or
- # Use cases

Other software measures

- # Functional & non-functional requirements
- # Test cases (Unit, System, Other)
- # Lines of code (reused & new)
- # Variants
- # Platforms
- Object code footprint (size)

Software architecture

- # Components
- # Components containing real time code
- % code in each architectural layer
- Programming language(s)

Hardware platform

- # Platforms
- Platform type & maturity
- Available object code storage space
- # and type of processors

Diagnostic factors

- # Defects
- # Spec changes
- Tools and methodologies employed
- Team environment (#sites, experience, ...)

Project duration , effort & cost

- Milestone dates
- Weekly or Monthly staffing
- Total project cost

Numetrics is a well-established company with a field proven sets of solutions

1998

Launch of

solution

2013 **Numetrics**

acquired by **McKinsey**

2001

Launch of semiconductor predictive planning semiconductor solutions benchmarking

2004

First embedded SW complexity model

2006 Launch of embedded SW predictive planning solution

First 1.000 SW projects released in industry database

2010

- Extensive database of ~2000 IC and ~1700 SW projects
- Field proven complexity estimation and predictive analytics algorithms
- Wide industry coverage including automotive, aerospace & defense, high tech, financial services, medical, etc.